Batteries can be classified according to their chemistry or specific electrochemical composition, which heavily dictates the reactions that will occur within the cells to convert chemical to electrical energy. Battery chemistry tells the electrode and electrolyte materials to be used for the battery construction.
An electric battery is an energy storage device comprising one or more electrochemical cells. These cells have external connections used to power electrical devices. When providing power, the battery’s positive terminal serves as the cathode, while the negative terminal functions as the anode.
Batteries power our lives by transforming energy from one type to another. Whether a traditional disposable battery (e.g., AA) or a rechargeable lithium-ion battery (used in cell phones, laptops, and cars), a battery stores chemical energy and releases electrical energy.
Battery chemistry tells the electrode and electrolyte materials to be used for the battery construction. It influences the electrochemical performance, energy density, operating life, and applicability of the battery for different applications. Primary batteries are “dry cells”.
Interestingly, in present times, unless explicitly specified otherwise, the term "battery" universally refers to electrochemical cells used for generating electrical energy, and even a single cell is now referred to as a battery.
Discharging and charging properties. Batteries can be classified according to their chemistry or specific electrochemical composition, which heavily dictates the reactions that will occur within the cells to convert chemical to electrical energy.