The inclusion of a Mg–Bi-based interlayer between the lithium metal and solid electrolyte and a F-rich interlayer on the cathode improves the stability and performance of solid-state lithium-metal batteries.
Future LIB advancements will optimize electrode interfaces for improved performance. The passivation layer in lithium-ion batteries (LIBs), commonly known as the Solid Electrolyte Interphase (SEI) layer, is crucial for their functionality and longevity.
The influence of interfaces represents a critical factor affecting the use of solid-state batteries (SSBs) in a wide range of practical industrial applications. However, our current understanding of this key issue remains somewhat limited.
Lithium-ion battery (LIB) is the most popular electrochemical device ever invented in the history of mankind. It is also the first-ever battery that operates on dual-intercalation chemistries, and the very first battery that relies on interphases on both electrodes to ensure reversibility of the cell chemistries.
The passivation layer in lithium-ion batteries (LIBs), commonly known as the Solid Electrolyte Interphase (SEI) layer, is crucial for their functionality and longevity. This layer forms on the anode during initial charging to avoid ongoing electrolyte decomposition and stabilize the anode-electrolyte interface.
Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. J. Mater. Chem. 2011; 21: 118-124 In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries.