As one of the new infrastructures, charging piles for new energy vehicles are different from the traditional charging piles. The "new" here means new digital technology which is an organic integration between charging piles and communication, cloud computing, intelligent power grid and IoV technology.
The rapid development of electrochemical energy storage (EES) devices requires multi-functional materials. Nickel (Ni)-based materials are regarded as promising candidates for EES devices owing to their unique performance characteristics, low cost, abundance, and environmental friendliness.
Design of Energy Storage Charging Pile Equipment The main function of the control device of the energy storage charging pile is to facilitate the user to charge the electric vehicle and to charge the energy storage battery as far as possible when the electricity price is at the valley period.
Charging piles are of great significance to developing new energy vehicles, and they are also an important part of the emerging digital economy such as intelligent traffic and intelligent energy. The State Grid Corporation of China (SGCC) is taking an active role in the development of new energy vehicles.
The main function of the control device of the energy storage charging pile is to facilitate the user to charge the electric vehicle and to charge the energy storage battery as far as possible when the electricity price is at the valley period. In this section, the energy storage charging pile device is designed as a whole.
This paper introduces a DC charging pile for new energy electric vehicles. The DC charging pile can expand the charging power through multiple modular charging units in parallel to improve the charging speed. Each charging unit includes Vienna rectifier, DC transformer, and DC converter.