High-temperature batteries are rechargeable batteries designed to withstand extreme temperatures. They are typically made of Li-ion or Ni-MH cells capable of delivering high levels of power and energy density. Generally, high temperature batteries can be divided into five levels: 100°C, 125°C, 150°C, 175°C, and 200°C and above.
Good volumetric energy density: the battery stores a maximum amount of energy in the smallest volume possible, resulting in better range. Optimal power density: the battery will deliver maximum power. Its energy density may be lower, but with less internal resistance, the battery can charge and discharge faster. The unit of power is the Watt (W).
High-temperature batteries offer a number of benefits. They: Perform well in extreme environments and are ideal for applications in temperatures over 60°C. Offer higher energy density than conventional batteries, meaning they can deliver more power for longer periods of time.
Lead-acid batteries and lithium-ion batteries require a stable environment to perform at expected levels. Some batteries are specifically designed for high-heat applications, but they may not be as efficient as normal products. High temperature lithium-ion batteries and lead-acid batteries can perform well until they reach their limit.
Have a long lifespan and are relatively low maintenance. Despite their many benefits, high temperature batteries also have a couple of drawbacks to consider. They: Are more expensive, leading to prohibitive costs in some applications. Require special care and maintenance to ensure they last as long as possible.
CMB’s high temperature lithium batteries have a charge temperature range of -20°C to 60°C and a discharge temperature range of -40°C to 85°C. Our high temperature lithium batteries can operate at 85 °C for 1,000 hours, while other typical lithium batteries would die or fail to work at that temperature.