The types of capacitor available range from very small delicate trimming capacitors using in oscillator or radio circuits, up to large power metal-can type capacitors used in high voltage power correction and smoothing circuits.
A capacitor consists of two metal plates and an insulating material known as a dielectric. Depending on the type of dielectric material and the construction, various types of capacitors are available in the market. Note: Capacitors differ in size and characteristics.
Ceramic capacitors, especially the multilayer style (MLCC), are the most manufactured and used capacitors in electronics. MLCC is made up of alternating layers of the metal electrode and ceramic as the dielectric. And due to this type of construction, the resulting capacitor consists of many small capacitors connected in a parallel connection.
There are basically two types of Aluminium Electrolytic Capacitor, the plain foil type and the etched foil type. The thickness of the aluminium oxide film and high breakdown voltage give these capacitors very high capacitance values for their size.
Depending on the type of metal and electrolyte used, the electrolytic capacitors are classified into the following types. Aluminum electrolytic capacitors – aluminum oxide (dielectric). Tantalum electrolytic capacitors – tantalum pentoxide (dielectric). Niobium electrolytic capacitors – niobium pentoxide (dielectric). Aluminum electrolytic
Film and paper capacitors are named for their dielectrics. Silver mica, glass, silicon, air-gap and vacuum capacitors are named for their dielectric. In addition to the above shown capacitor types, which derived their name from historical development, there are many individual capacitors that have been named based on their application.
OverviewElectrical characteristicsGeneral characteristicsTypes and stylesAdditional informationMarket segmentsSee alsoExternal links
Discrete capacitors deviate from the ideal capacitor. An ideal capacitor only stores and releases electrical energy, with no dissipation. Capacitor components have losses and parasitic inductive parts. These imperfections in material and construction can have positive implications such as linear frequency and temperature behavior in class 1 ceramic capacitors. Conversel…