In this paper, an innovative liquid cooling plate (LCP) embedded with phase change material (PCM) is designed for electric vehicle (EV) battery thermal management. The proposed cooling plate is named "hybrid cooling plate" as it takes advantage of both active (liquid) and passive (PCM) cooling methods.
With the increasing application of the lithium-ion battery, higher requirements are put forward for battery thermal management systems. Compared with other cooling methods, liquid cooling is an efficient cooling method, which can control the maximum temperature and maximum temperature difference of the battery within an acceptable range.
Herein, thermal management of lithium-ion battery has been performed via a liquid cooling theoretical model integrated with thermoelectric model of battery packs and single-phase heat transfer.
Liquid cooling, due to its high thermal conductivity, is widely used in battery thermal management systems. This paper first introduces thermal management of lithium-ion batteries and liquid-cooled BTMS.
However, lithium-ion batteries are temperature-sensitive, and a battery thermal management system (BTMS) is an essential component of commercial lithium-ion battery energy storage systems. Liquid cooling, due to its high thermal conductivity, is widely used in battery thermal management systems.
Under this trend, lithium-ion batteries, as a new type of energy storage device, are attracting more and more attention and are widely used due to their many significant advantages.