external quantum efficiency of mono-crystalline silicon solar cell at room temperature is reported. The xperiment was undertaken within the wavelength range 350-1100 nm employing spectral response meter. The results show that the spectral response
The quantum efficiency of a silicon solar cell. Quantum efficiency is usually not measured much below 350 nm as the power from the AM1.5 spectrum contained in such low wavelengths is low. While quantum efficiency ideally has the square shape shown above, the quantum efficiency for most solar cells is reduced due to recombination effects.
The photovoltaic sector is now led by silicon solar cells because of their well-established technology and relatively high efficiency. Currently, industrially made silicon solar modules have an efficiency between 16% and 22% (Anon (2023b)).
IV. CONCLUSION This work presents new calculations of the limiting efficiency for crystalline silicon solar cells (in the “narrow base” approximation) systematically as a function of the doping concentration and the cell thickness taking recently improved modeling parameters into account.
According to these approaches (usually referred to as semi-empirical), the efficiency of a solar cell depends on the optical bandgap (E gap) of the semiconductor material indicating that, for crystalline Si (E gap ∼1.1 eV), the maximum efficiency stays in the ∼ 15–22 % range.
The "quantum efficiency" (Q.E.) is the ratio of the number of carriers collected by the solar cell to the number of photons of a given energy incident on the solar cell. The quantum efficiency may be given either as a function of wavelength or of energy.