New energy electric vehicles will become a rational choice to achieve clean energy alternatives in the transportation field, and the advantages of new energy electric vehicles rely on high energy storage density batteries and efficient and fast charging technology. This paper introduces a DC charging pile for new energy electric vehicles.
The advantage of DC charging pile is that the charging voltage and current can be adjusted in real time, and the charging time can be significantly shortened when the charging current are large, which is a more widely used charging method at present.
Simulation waveforms of a new energy electric vehicle charging pile composed of four charging units Figure 8 shows the waveforms of a DC converter composed of three interleaved circuits. The reference current of each circuit is 8.33A, and the reference current of each DC converter is 25A, so the total charging current is 100A.
Furthermore, high-power direct-current (DC) charging piles, which are unsuitable for home installation, can provide much faster EV charging, making them ideal for urban areas, such as Madrid and Manhattan, where parking costs are high (Faria et al., 2014).
The promotion effect of direct-current charging piles on EV sales is twice that of alternating-current charging piles in the one-year simulation of our model. Increasing the number of EV charging piles has a significant impact on battery electric vehicle sales but not on plug-in hybrid electric vehicle sales. 1. Introduction
In [5, 6], the rectifier of the DC charging pile is an uncontrollable rectifier. When the uncontrollable rectifier works, it will inject large harmonic current into the AC grid, the harmonic current will affect the service life of the input transformer, increase the power grid loss, and cause voltage fluctuation.