Phosphorus in energy storage has received widespread attention in recent years. Both the high specific capacity and ion mobility of phosphorus may lead to a breakthrough in energy storage materials. Black phosphorus, an allotrope of phosphorus, has a sheet-like structure similar to graphite.
In this review, we outline recent research on the application of black phosphorus in energy storage. By the summary of several early reviews and the collation of related research fields, the important research progress of phosphorus, especially black phosphorus, in the field of electrochemistry is introduced.
The present critical issues, challenges, and perspectives in terms of well-harnessed scalability, quality, and stability are comprehensively covered. An in-depth understanding of these aspects is of great importance for the design of black phosphorus as a multifunctional candidate in future energy storage and conversion. 1. Introduction
Phosphorus-rich metal phosphides show great superiority in energy storage and conversion fields. The up-to-date advances of phosphorus-rich metal phosphides are summarized and analyzed insightfully. The theory-composition/structure-performance relationships and the reasons behind the superior performance are revealed.
All in all, with persistent attempts by researchers around the world, it is out of question that black phosphorus would not only open a new chapter for a new generation of energy materials but also provide a remarkable market potential in the foreseeable future. There are no conflicts to declare.
Chemical energy storage system Batteries encompass secondary and flow batteries, storing energy through chemical reactions and are commonly utilized in diverse applications, ranging from small electronic gadgets to large-scale energy storage on the grid .