In summary, the energy storage types covered in this section are presented in Fig. 10. Note that other categorizations of energy storage types have also been used such as electrical energy storage vs thermal energy storage, and chemical vs mechanical energy storage types, including pumped hydro, flywheel and compressed air energy storage. Fig. 10.
Chemical energy storage systems are sometimes classified according to the energy they consume, e.g., as electrochemical energy storage when they consume electrical energy, and as thermochemical energy storage when they consume thermal energy.
Mechanical energy storage methods are easily adaptable to convert and store energy from water current, wave, and tidal sources. They mainly comprise of flywheel, pumped storage, and compressed air storage Technologies. This passage discusses the flywheel system in more detail (2.4.1).
This article encapsulates the various methods used for storing energy. Energy storage technologies encompass a variety of systems, which can be classified into five broad categories, these are: mechanical, electrochemical (or batteries), thermal, electrical, and hydrogen storage technologies.
An energy storage system (ESS) can be classified based on its methods and applications. Some energy storage methods may be suitable for specific applications, while others can be applied in a wider range of frames. The inclusion of energy storage methods and technologies in various sectors is expected to increase in the future.
Mechanical energy storage systems are classified into the following types based on their working principles: pressurized gas, forced springs, kinetic energy, and potential energy. Mechanical energy storage systems have the advantage of being able to readily deliver the energy whenever required for mechanical works.