Renewable energy source integration with power systems is one of the main concepts of smart grids. Due to the variability and limited predictability of these sources, there are many challenges associated with integration. This paper reviews integration of solar systems into electricity grids.
Solar systems integration involves developing technologies and tools that allow solar energy onto the electricity grid, while maintaining grid reliability, security, and efficiency. For most of the past 100 years, electrical grids involved large-scale, centralized energy generation located far from consumers.
By 2030, as much as 80% of electricity could flow through power electronic devices. One type of power electronic device that is particularly important for solar energy integration is the inverter. Inverters convert DC electricity, which is what a solar panel generates, to AC electricity, which the electrical grid uses.
Solar Energy Grid Integration Systems may be configured to address any combination of these market application segments and may be modular in nature. The scale of these markets is described in Table 1. PV systems generate energy with minimal environmental impact. However, a simple PV system without storage provides power only when the sun shines.
Photovoltaic or PV system are leading this revolution by utilizing the available power of the sun and transforming it from DC to AC power.
Photovoltaic (PV) technology is rapidly developing for grid-tied applications around the globe. However, the high-level PV integration in the distribution networks is tailed with technical challenges. Some technical challenges concern the stability issues associated with intensive PV penetration into the power system are reviewed in this study.