Emerging consumer electronics and electric vehicle technologies require advanced battery systems to enhance their portability and driving range, respectively. Therefore, graphene seems to be a great candidate material for application in high-energy-density/high-power-density batteries.
In 2018, more than 25% of lithium battery publications were related to graphene. Using graphene has benefits in advancing battery material performance. In industry, the mainstream applications of lithium-ion batteries gradually shifted from cell phones and portable consumer electronics to transportation and grid storage applications.
Although solid-state graphene batteries are still years away, graphene-enhanced lithium batteries are already on the market. For example, you can buy one of Elecjet's Apollo batteries, which have graphene components that help enhance the lithium battery inside.
Graphene is an essential component of Nanotech Energy batteries. We take advantage of its qualities to improve the performance of standard lithium-ion batteries. In comparison to copper, it’s up to 70% more conductive at room temperature, which allows for efficient electron transfer during operation of the battery.
This helps prevent local heat concentration within battery packs, a primary contributor to thermal failure. Batteries equipped with these graphene current collectors were able to maintain stable temperatures, avoiding the fast exothermic reactions that can occur with aluminum and copper foils.
Graphene batteries sound awesome, like something from science fiction. The good news is that you don't actually have to wait to experience the benefits of graphene. Although solid-state graphene batteries are still years away, graphene-enhanced lithium batteries are already on the market.