(Image credit: Artur Debat via Getty Images) A technology that could dramatically increase the range and decrease the charging time of electric vehicle (EV) batteries could soon be in many more cars. The technology swaps the graphite normally used on the negatively charged anodes of lithium-ion EV batteries for silicon.
The technology swaps the graphite normally used on the negatively charged anodes of lithium-ion EV batteries for silicon. Panasonic recently announced a partnership with Sila Nanotechnologies, which makes the silicon anodes, to integrate the technology into the company's existing battery production line in 2024.
Projections are that more than 60% of all vehicles sold by 2030 will be EVs, and battery technology is instrumental in supporting that growth. Batteries also play a vital role in enhancing power-grid resilience by providing backup power during outages and improving stability in the face of intermittent solar or wind generation.
Battery technology has emerged as a critical component in the new energy transition. As the world seeks more sustainable energy solutions, advancements in battery technology are transforming electric transportation, renewable energy integration, and grid resilience.
Moreover, advanced battery materials, flow batteries, and solid-state batteries increase the energy density and charging speeds for various devices. Further, the implementation of nanotechnology in battery manufacturing increases the surface and size of battery electrodes to absorb more energy during charging and increase energy storage capacity.
The significance and global impact of successfully creating highly efficient battery systems makes it the top battery tech trend in 2025. Indian startup Batx Energies implements net zero waste and zero emissions processes for recycling end-of-life lithium-ion batteries.