LFP batteries or Lithium Iron Phosphate (LiFEPO4) batteries typically use a graphite or carbon electrode with a metallic backing as an anode. The cathode material, as the name implies, is typically some chemical make-up or mix of Lithium Iron Phosphate.
These batteries have gained popularity in various applications, including electric vehicles, energy storage systems, and consumer electronics. Lithium-iron phosphate (LFP) batteries use a cathode material made of lithium iron phosphate (LiFePO4).
Compared to NMC or LMO battery chemistries, the overall Lithium Iron Phosphate battery system footprint may be larger. However, the collective impact on safety and reliability may outweigh footprint and price concerns due to the overall impact NFPA 855, UL9540A, and the local AHJs review of systems have on the industry.
Lithium-iron phosphate (LFP) batteries are just one of the many energy storage systems available today. Let’s take a look at how LFP batteries compare to other energy storage systems in terms of performance, safety, and cost.
The effects of temperature on lithium iron phosphate batteries can be divided into the effects of high temperature and low temperature. Generally, LFP chemistry batteries are less susceptible to thermal runaway reactions like those that occur in lithium cobalt batteries; LFP batteries exhibit better performance at an elevated temperature.
Lithium iron phosphate batteries officially surpassed ternary batteries in 2021 with 52% of installed capacity. Analysts estimate that its market share will exceed 60% in 2024.