Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements.
tery that is made based on lithium iron phosphate (LFP) battery by replacing some of the iron used as the cathode mat ial with manganese. It has the advantage of achieving higher energy density than LFP while maintaining the same cost and level of safety.In China, where cost-effective LFP batteries account for 60% of
Besides the cell manufacturing, “macro”-level manufacturing from cell to battery system could affect the final energy density and the total cost, especially for the EV battery system. The energy density of the EV battery system increased from less than 100 to ∼200 Wh/kg during the past decade (Löbberding et al., 2020).
Therefore, when evaluating the new manufacturing technologies, transferability to beyond LIB manufacturing should be considered. Although the invention of new battery materials leads to a significant decrease in the battery cost, the US DOE ultimate target of $80/kWh is still a challenge (U.S. Department Of Energy, 2020).
nese iron phosphate (LMFP), a type of lithium-ion battery whose cathode is made based on LFP by replacing some of the iron with manganese. LMFP batteries are attracting attention as a promising successor to LFP batteries becaus
the cathode material, and ternary lithium-ion (NMC) batteries, which use a compound consisting primarily of nickel, manganese, and cobalt. LFP batteries are safer and less expensive because they