In advanced polymer-based solid-state lithium-ion batteries, gel polymer electrolytes have been used, which is a combination of both solid and polymeric electrolytes. The use of these electrolytes enhanced the battery performance and generated potential up to 5 V.
The electrolyte solution in a basic battery is the liquid, gel, or paste that allows electrical charge to flow between a negatively charged metal and a positively charged metal in a battery. The separator is a membrane keeps the two metals from touching so that the battery doesn’t short-circuit!
Lithium-ion battery technology is viable due to its high energy density and cyclic abilities. Different electrolytes are used in lithium-ion batteries for enhancing their efficiency. These electrolytes have been divided into liquid, solid, and polymer electrolytes and explained on the basis of different solvent-electrolytes.
The electrochemical cycles of batteries can be increased by the creation of a solid electrolyte interface. Solid-state batteries exhibited considerable efficiency in the presence of composite polymer electrolytes with the advantage of suppressed dendrite growth.
Lithium sulfur (Li-S) battery, which is another type of LMB employing sulfur as a cathode active material, strongly demands lean electrolyte design, because electrolyte takes the largest portion in cell weight (44.3 wt% at electrolyte/sulfur ratio of 7 μ L m g − 1) due to the low densities of sulfur (2.0 g cm −3) and Li metal (0.534 g cm −3) .
A lean electrolyte design is one of the central aims of current research on lithium metal batteries (LMBs) based on liquid electrolytes because of its high impact on augmenting a gravimetric energy density.