Lithium (Li) metal is widely recognized as a highly promising negative electrode material for next-generation high-energy-density rechargeable batteries due to its exceptional specific capacity (3860 mAh g −1), low electrochemical potential (−3.04 V vs. standard hydrogen electrode), and low density (0.534 g cm −3).
Summary and Perspectives As the energy densities, operating voltages, safety, and lifetime of Li batteries are mainly determined by electrode materials, much attention has been paid on the research of electrode materials.
Lithium (Li) metal shows promise as a negative electrode for high-energy-density batteries, but challenges like dendritic Li deposits and low Coulombic efficiency hinder its widespread large-scale adoption.
The escalating demand for high-capacity energy storage systems emphasizes the necessity to innovate batteries with enhanced energy densities. Consequently, materials for negative electrodes that can achieve high energy densities have attracted significant attention.
Due to the smaller capacity of the pre-lithiated graphite (339 mAh g −1 -LiC 6), its full-cell shows much lower capacity than the case of Li 21 Si 5 (0.2–2 μm) (Fig. 6b), clearly indicating the advantage of the Li-rich Li-Si alloy as a promising lithium-containing negative electrode for next-generation high-energy LIBs.
During the initial lithiation of the negative electrode, as Li ions are incorporated into the active material, the potential of the negative electrode decreases below 1 V (vs. Li/Li +) toward the reference electrode (Li metal), approaching 0 V in the later stages of the process.