Perovskite materials have been an opportunity in the Li–ion battery technology. The Li–ion battery operates based on the reversible exchange of lithium ions between the positive and negative electrodes, throughout the cycles of charge (positive delithiation) and discharge (positive lithiation).
Ahmad et al. demonstrated the use of 2D lead-based perovskites, namely, (C 6 H 9 C 2 H 4 NH 3) 2 PbI 4, as a photo-active electrode material in a lithium-ion battery [ Figs. 4 (a) and 4 (b) ]. 90 The battery with the iodide perovskite showed a specific capacity up to 100 mAh g −1 at 30 mA g −1.
Hence, at best some of the reported organic–inorganic lead halide perovskites are possible anode (negative electrode) conversion type electrodes, but these results have nothing to do with a multifunctional photo battery (cathode) material.
Precisely, we focus on Li-ion batteries (LIBs), and their mechanism is explained in detail. Subsequently, we explore the integration of perovskites into LIBs. To date, among all types of rechargeable batteries, LIBs have emerged as the most efficient energy storage solution .
The released electrons then move through an electron transport layer (ETL), facilitating their transport towards the battery. At the interface between the perovskite solar cell and the LIB, an electrolyte or electrolyte medium is present, allowing the migration of lithium ions.
Their soft structural nature, prone to distortion during intercalation, can inhibit cycling stability. This review summarizes recent and ongoing research in the realm of perovskite and halide perovskite materials for potential use in energy storage, including batteries and supercapacitors.