Graphene is capable of enhancing the performance, functionality as well as durability of many applications, but the commercialization of graphene still requires more research activity being conducted. This investigation explored the application of graphene in energy storage device, absorbers and electrochemical sensors.
Graphene demonstrated outstanding performance in several applications such as catalysis , catalyst support , CO 2 capture , and other energy conversion and energy storage devices .
Miscellaneous energy storage devices (solar power) Of further interest and significant importance in the development of clean and renewable energy is the application of graphene in solar power based devices, where photoelectrochemical solar energy conversion plays an important role in generating electrical energy , .
This review aims to summarize the synthetic methods, mechanistic aspects, and energy storage and conversion applications of novel 3D network graphene, graphene derivatives and graphene-based materials. Areas of application include supercapacitors, Li-batteries, H 2 and thermal energy storage, fuel cells and solar cells.
As capacity requirements in energy storage applications increase, graphene composites such as the embedment/encapsulation of nanostructured materials in graphene have been developed to meet these requirements.
In light of the literature discussed above current research regarding graphene as a Li-ion storage device indicates it to be beneficial over graphite based electrodes, exhibiting improved cyclic performances and higher capacitance for applications within Li-ion batteries.