A lead acid battery left in storage at moderate temperatures has an estimated self-discharge rate of 5% per month. This rate increases as temperatures rise and as the risk of sulfation goes up. Sulfating: This is a buildup of lead sulfate crystals and it occurs when a lead acid battery is left sitting without a full charge.
The following mainly analyzes the lead-acid battery short circuit caused by excessive charging current, charging voltage of a single battery exceeds 2.4V, internal short-circuit or partial discharge, excessive temperature rise and valve control failure, and summarizes the treatment methods of lead acid battery short circuit as follows:
If you’re new to lead acid batteries or just looking for better ways to maintain their performance, keep these four easy things in mind. 1. Undercharging Undercharging occurs when the battery is not allowed to return to a full charge after it has been used. Easy enough, right?
Since that is no longer an issue (and never was an issue with lead acid batteries) there is not a need to fully discharge. By discharging a lead acid battery to below the manufacturer’s stated end of life discharge voltage you are allowing the polarity of some of the weaker cells to become reversed.
Sulfating: This is a buildup of lead sulfate crystals and it occurs when a lead acid battery is left sitting without a full charge. Even if you are giving your battery a small charge such as putting it in the car and letting it idle, this is still not enough to combat the self-discharge that can take place.
Whereas a lead acid battery being stored at 65℉ will only discharge at a rate of approximately 3% per month. Length of Storage: The amount of time a battery spends in storage will also lead to self-discharge. A lead acid battery left in storage at moderate temperatures has an estimated self-discharge rate of 5% per month.