This paper mainly studies the application progress of phase change energy storage technology in new energy, discusses the problems that still need to be solved, and propose a new type of phase change energy storage - wind and solar hybrid integration system. The advantages and disadvantages of phase change materials are compared and analyzed.
Phase change materials (PCMs) having a large latent heat during solid-liquid phase transition are promising for thermal energy storage applications. However, the relatively low thermal conductivity of the majority of promising PCMs (<10 W/ (m ⋅ K)) limits the power density and overall storage efficiency.
During the phase change process, the temperature of PCM remains stable, while the liquid phase rate will change continuously, which implies that phase change energy storage is a non-stationary process. Additionally, the heat storage/release of the phase change energy storage process proceeds in a very short time.
The phase change energy storage – wind and solar complementary system is a renewable energy combined power supply and heating system, which is composed of three parts: solar energy collection, photovoltaic and wind power. Among them, the solar heat collecting system converts light energy into heat energy through the solar collector.
In general, Organic phase change energy storage materials have many advantages, such as thermal and chemical properties are relatively stable, high enthalpy of phase change, no phase separation and supercooling, non-toxic, low cost, etc.
Fig. 7. Phase change energy storage- wind and solar hybrid integration. The phase change energy storage – wind and solar complementary system is a renewable energy combined power supply and heating system, which is composed of three parts: solar energy collection, photovoltaic and wind power.