A voltage chart for lithium iron phosphate (LiFePO4) batteries typically shows the relationship between the battery’s state of charge (SOC) and its voltage. LiFePO4 batteries have a relatively flat voltage curve. This means their voltage changes only slightly across a wide range of charge levels.
12V Lithium Battery Voltage Chart (1st Chart). Here we see that the 12V LiFePO4 battery state of charge ranges between 14.4V (100% charging charge) and 10.0V (0% charge). 24V Lithium Battery Voltage Chart (2nd Chart). Here we see that the 24V LiFePO4 battery state of charge ranges between 28.8V (100% charging charge) and 20.0V (0% charge).
Let’s start with a 12V lithium battery voltage charge, and go one-by-one to 24V, 48V, and 3.2V lipo batteries voltage charts: Notice that at 100% capacity, 12V lithium batteries can have 2 different voltages; depending if the battery is still charging (14.4V) or if it is resting or not-charging (13.6V).
Lithium batteries, like any other batteries, have a specific discharge curve. That means that the voltage of the LiFePO4 battery decreases with the decrease in battery capacity (from 100% to 0%). The specific battery voltage state of charge (SOC) is determined by voltage charts. To help you out, we have prepared these 4 lithium voltage charts:
24V LiFePO4 battery can achieved by connecting 8 cells of 3.2V in series. To create a 36V LiFePO4 battery pack its need to connect 12 cells of 3.2V in series. Please note that actual voltage values may vary based on the specific manufacturer, model, and temperature conditions. Here’s a general outline of what the voltage chart might look like:
3.2V lithium batteries are those regular batteries you put in older TV remote controls. Here are the voltage discharges: As you can see, 3.2V LiFePO4 battery can output anywhere from 3.65V (at 100% charging) to 2.5V (0%). Here is the 3.2V lithium battery discharge graph: