Choosing a proper cooling method for a lithium-ion (Li-ion) battery pack for electric drive vehicles (EDVs) and making an optimal cooling control strategy to keep the temperature at a optimal range of 15 °C to 35 °C is essential to increasing safety, extending the pack service life, and reducing costs.
Indirect liquid cooling has been adopted by the Chevrolet Volt, and Tesla Model S. A123 used fins for heat removal and achieved temperature uniformity. A fierce debate is ongoing about which kind of cooling method should be applied to EDV battery packs.
Heat pipe cooling for Li-ion battery pack is limited by gravity, weight and passive control . Currently, air cooling, liquid cooling, and fin cooling are the most popular methods in EDV applications. Some HEV battery packs, such as those in the Toyota Prius and Honda Insight, still use air cooling.
Lithium (Li) metal is widely recognized as a highly promising negative electrode material for next-generation high-energy-density rechargeable batteries due to its exceptional specific capacity (3860 mAh g −1), low electrochemical potential (−3.04 V vs. standard hydrogen electrode), and low density (0.534 g cm −3).
Anisha et al. analyzed liquid cooling methods, namely direct/immersive liquid cooling and indirect liquid cooling, to improve the efficiency of battery thermal management systems in EVs. The liquid cooling method can improve the cooling efficiency up to 3500 times and save energy for the system up to 40% compared to the air-cooling method.
Performed 3D electrochemical-thermal modeling of four battery cooling methods. Thermal performance of direct air cooling, direct liquid cooling, indirect (jacket) liquid and fin cooling are compared. Merits and limitations of each cooling method for occupying a fixed volume are summarized.