Abstract: The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems.
Based on these calculations, the BMS can take appropriate actions, such as regulating charging and discharging rates, activating cooling systems, or initiating cell balancing routines. It also communicates with the host system (e.g., a vehicle’s control unit or a power management system) to provide battery status updates and receive commands.
It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health.
Increased safety: By continuously monitoring and protecting the battery pack, a BMS significantly reduces the risk of thermal runaway, fires, or other hazardous events. Extended battery life: Proper cell balancing, thermal management, and state estimation help maximize the battery’s cycle life and overall longevity.
The high capacity and large quantity of battery cells in EV as well as the high standards of vehicle safety and reliability call for the agile and adaptive battery management system (BMS). BMS is one of the key technologies for electric vehicle development, which contributes to the overall performance of lithium-ion batteries in operations.
2. Modular BMS: This architecture divides the battery pack into smaller modules, each with its own BMS controller. These modules communicate with a central master controller, offering improved scalability and redundancy. 3. Distributed BMS: In a distributed BMS, each battery cell or small group of cells has its own dedicated management circuit.