Then there might be improved lithium-ion batteries, maybe using silicon anodes or rocksalt cathodes, for mid-range vehicles, or perhaps solid-state lithium batteries will take over that class. Then there might be LiS or even lithium–air cells for high-end cars — or flying taxis. But there’s a lot of work yet to be done.
The planet’s oceans contain enormous amounts of energy. Harnessing it is an early-stage industry, but some proponents argue there’s a role for wave and tidal power technologies. (Undark) Batteries can unlock other energy technologies, and they’re starting to make their mark on the grid.
Projections are that more than 60% of all vehicles sold by 2030 will be EVs, and battery technology is instrumental in supporting that growth. Batteries also play a vital role in enhancing power-grid resilience by providing backup power during outages and improving stability in the face of intermittent solar or wind generation.
Batteries are effectively chemical sandwiches, which work by shuttling charged ions from one side (the anode) to the other (the cathode) through some intermediate material (the electrolyte) while electrons flow in an outside circuit. Recharging the battery means shunting the ions back to the anode (see ‘How a battery works’).
Batteries can unlock other energy technologies, and they’re starting to make their mark on the grid. This article is from The Spark, MIT Technology Review ’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here. Batteries are on my mind this week. (Aren’t they always?)
Battery technology has emerged as a critical component in the new energy transition. As the world seeks more sustainable energy solutions, advancements in battery technology are transforming electric transportation, renewable energy integration, and grid resilience.