Capacitor Bank Definition: A capacitor bank is a collection of multiple capacitors used to store electrical energy and enhance the functionality of electrical power systems. Power Factor Correction: Power factor correction involves adjusting the capacitor bank to optimize the use of electricity, thereby improving the efficiency and reducing costs.
One of the primary reasons for using capacitor banks in power systems is to correct the power factor. Power factor is the ratio of active power (useful power) to apparent power (total power) in an electrical system. A low power factor indicates inefficiency, where a significant portion of the power is wasted as reactive power.
They can only compensate for reactive power and do not address issues related to active power or harmonics in the system. Additionally, capacitor banks are only effective when the system’s power factor is below 1.0 and may not be necessary in systems that already have efficient power factor correction.
Connecting the capacitor bank across the line helps absorb part of the reactive power drawn by these loads, resulting in improved power factor and therefore better efficiency in your power system.
Capacitor banks contribute to reducing transmission losses in power systems by improving the power factor and maintaining voltage levels. When reactive power is supplied closer to the load, the current through the transmission lines decreases, thereby reducing losses. 6. Enhancing Power System Capacity
Therefore, the primary function of a capacitor bank is to improve the power factor of the system and minimize the energy losses. Capacitor banks are important components in substations because they play a crucial role in improving the overall efficiency of an electrical substation. How Does a Capacitor Bank Work?