Concluding remarks Liquid air energy storage (LAES) is becoming an attractive thermo-mechanical storage solution for decarbonization, with the advantages of no geological constraints, long lifetime (30–40 years), high energy density (120–200 kWh/m 3), environment-friendly and flexible layout.
Cold energy utilization research has focused on improving the efficiency of liquid air production and storage. Studies have shown that leveraging LNG cold energy can reduce specific energy consumption for liquid air production by up to 7.45 %.
Szablowski et al. performed an exergy analysis of the adiabatic liquid air energy storage (A-LAES) system. The findings indicate that the Joule–Thompson valve and the air evaporator experience the greatest energy destruction.
4.1. Standalone liquid air energy storage In the standalone LAES system, the input is only the excess electricity, whereas the output can be the supplied electricity along with the heating or cooling output.
2.1. History 2.1.1. History of liquid air energy storage plant The use of liquid air or nitrogen as an energy storage medium can be dated back to the nineteen century, but the use of such storage method for peak-shaving of power grid was first proposed by University of Newcastle upon Tyne in 1977 .
Novel concepts like waste heat utilization liquid air energy storage (WHU-LAES) systems have been proposed to enhance overall system performance. Develop and test new materials with improved thermal properties for more efficient cold energy storage and heat exchange in LAES systems.