Therefore, the lithium battery must also be about 58v, so it must be 14 strings to 58.8v, 14 times 4.2, and the iron-lithium full charge is about 3.4v, it must be four strings of 12v, 48v must be 16 strings, and so on, 60v There must be 20 strings in parallel with the same model and the same capacity.
Whenever possible, using a single string of lithium cells is usually the preferred configuration for a lithium ion battery pack as it is the lowest cost and simplest. However, sometimes it may be necessary to use multiple strings of cells. Here are a few reasons that parallel strings may be necessary:
Each lithium battery in the bank is a 51.2Vn 30AH lithium battery with a BMS capable of managing 30A of continuous charge or discharge current. By connecting 4 x 51.2V 30AH batteries in parallel each string becomes a 51.2V 120AH string capable of handling up to 120 amps of continuous current.
Connecting multiple lithium batteries into a string of batteries allows us to build a battery bank with the potential to operate at an increased voltage, or with increased capacity and runtime, or both.
The whole set of batteries is 14 strings multiplied by 10 cells = 140 cells. Summary: Series and parallel have their own advantages for lithium iron phosphate batteries. Series and parallel lithium battery packs have different methods and achieve different goals.
Since lithium cells must be managed on a cell level, parallel lithium strings dramatically increase the complexity and cost of the battery management and introduce many additional points of failure and failure modes not found with a single string.