Lithium-ion capacitors (LICs) are combinations of LIBs and SCs which phenomenally improve the performance by bridging the gap between these two devices. In this review, we first introduce the concept of LICs, criteria for materials selection and recent trends in the anode and cathode materials development.
Correction added on 12th August 2023, after first online publication: Ref. 7 has been updated with DOI link. Lithium-ion capacitors (LICs) are becoming important electrochemical energy storage systems due to their great potential to bridge the gap between supercapacitors and lithium-ion batteries.
Design of Lithium-Ion Capacitors In terms of LIC design, the process of pre-lithiation, the working voltage and the mass ratio of the cathode to the anode allow a difference in energy capacity, power efficiency and cyclic stability. An ideal working capacity can usually be accomplished by intercalating Li + into the interlayer of graphite.
However, in the present state of the art, both devices are inadequate for many applications such as hybrid electric vehicles and so on. Lithium-ion capacitors (LICs) are combinations of LIBs and SCs which phenomenally improve the performance by bridging the gap between these two devices.
Cite this: ACS Energy Lett. 2024, 9, 2, 636–643 A dual faradaic lithium-ion capacitor (LIC) promises high energy density but commonly suffers from low-power characteristics. The reason causing this deficiency is attributed to bulk-phase mass-transfer-induced sluggish dynamics, especially in the anode.
Using this approach, it has been observed that such a LIC has over 95% capacitance retention after 10,000 cycles at 20 °C . Based on 3-electrode hybrid configuration , other types of lithium, such as lithium silicide, can be used for the anodes .