In addition to these failures, capacitors may fail due to capacitance drift, instability with temperature, high dissipation factor or low insulation resistance. Failures can be the result of electrical, mechanical, or environmental overstress, "wear-out" due to dielectric degradation during operation, or manufacturing defects.
The dielectric in the capacitor is subjected to the full potential to which the device is charged and, due to small capacitor physical sizes, high electrical stresses are common. Dielectric breakdowns may develop after many hours of satisfactory operation. There are numerous causes which could be associated with operational failures.
Such failures can be avoided with preventive maintenance action such as replacing the capacitor. For film capacitors, the typical failure mode is capacitance decrease due to self-healing, so it is possible to diagnose the life expectancy by understanding the capacitance change.
Electromigration is one of failure mechanisms of semiconductor, but the failure mode can appear as a short, open, or characteristic degradation. Capacitors have several failure modes, the degree of which depends on the type of capacitor (Table 1).
This can happen due to a manufacturing defect, physical damage, or corrosion. Open capacitors are usually irreparable and need to be replaced. However, if the capacitor undergoes too much physical stress, it can cause the entire capacitor to break apart.
Catastrophic failure is the complete loss of function of the capacitor in a circuit. Catastrophic failure, such as open or short circuit, is the complete loss of function of the capacitor. This failure can cause the enclosure to explode, smoke, ignite, harm other electrical components, or leak liquid or gas from inside the capacitor.
Causes: This bulging is typically due to gas buildup inside the capacitor. The gas is produced when the electrolyte inside the capacitor begins to break down due to overheating, overvoltage, or age-related wear. Implications: A bulging …