To sustain a stable and cost-effective transformation, large wind integration needs advanced control and energy storage technology. In recent years, hybrid energy sources with components including wind, solar, and energy storage systems have gained popularity.
In summary, this review paper has synthesized the existing literature on frequency regulation and energy storage solutions for wind integration. The findings highlight the significance of ESS in ensuring the efficiency and reliability of future grid systems with significant wind power penetration.
The paper presents a control technique, supported by simulation findings, for energy storage systems to reduce wind power ramp occurrences and frequency deviation . The authors suggested a dual-mode operation for an energy-stored quasi-Z-source photovoltaic power system based on model predictive control .
Different ESS features [81, 133, 134, 138]. Energy storage has been utilized in wind power plants because of its quick power response times and large energy reserves, which facilitate wind turbines to control system frequency .
The frequency reliability of wind plants can be efficiently increased due to hydrogen storage systems, which can also be used to analyze the wind's maximum power point tracking and increase windmill system performance. A brief overview of Core issues and solutions for energy storage systems is shown in Table 4.
Wind energy integration's key problems are energy intermittent, ramp rate, and restricting wind park production . The energy storage system generating-side contribution is to enhance the wind plant's grid-friendly order to transport wind power in ways that can be operated such as traditional power stations.