When a lithium-ion battery fire breaks out, the damage can be extensive. These fires are not only intense, they are also long-lasting and potentially toxic. What causes these fires? Most electric vehicles humming along Australian roads are packed with lithium-ion batteries.
The devastating consequences of rapidly spreading and often challenging-to-extinguish fires involving lithium-ion batteries have been well-documented in recent months. Recent stories have included fires as a result of electric vehicles (EV) on board ships, and in other parts of the supply chain.
Our quantitative study of the emission gases from Li-ion battery fires covers a wide range of battery types. We found that commercial lithium-ion batteries can emit considerable amounts of HF during a fire and that the emission rates vary for different types of batteries and SOC levels.
Toxic gases released during the burning of Lithium-ion batteries (CO and CO2) | Lithium-ion battery a clean future? Similar to hydrogen fluoride (HF), carbon monoxide (CO) and carbon dioxide (CO2) are common toxic gases that are released in the burning of LIB (Peng et al., 2020 ).
Fire is not the only danger with lithium-ion batteries. Here’s what risk managers need to know, and how to manage the threats The devastating consequences of rapidly spreading and often challenging-to-extinguish fires involving lithium-ion batteries have been well-documented in recent months.
Reactive with water: Water can't extinguish these fire — water mixes with the burning lithium metal inside the battery, generating flammable hydrogen gas and intensifying the fire. Further, salt water can react with Li-ion batteries to sustain a fire (Picon 2022).