The capacitance value on a capacitor symbol is represented by a numerical value followed by the SI unit of capacitance, which is the Farad. However, these values can be in microfarads (µF) or picofarads (pF) for capacitors with small capacitance values.
The symbol for a capacitor in circuit diagrams is two parallel lines representing the plates, with a gap indicating the dielectric material. The symbol is universally recognized in electronics and helps in identifying the role of capacitors within a circuit. What are the different types of capacitors?
The most ubiquitous capacitor symbol is the two straight parallel lines without polarity markers, representing fixed non-polarized capacitors. Common examples are ceramic disc capacitors. What factors determine capacitance value?
The symbol for a variable capacitor is similar to that of a fixed capacitor, but it includes an arrow through one of the plates to indicate adjustability. The symbol is represented as follows: A commonly used symbol for a trimmer capacitor is two parallel lines with a diagonal line in between, indicating its adjustable nature.
There is, however, a common approach to representing them using a rectangle with one straight edge and one curved or absent edge. The schematic symbols used will vary based on the type of capacitor used and the preference of a designer; clear communication must be used, with added legends, for clarity.
Uses electrolyte as dielectric to achieve high capacitance. Requires correct polarity. Uses tantalum pentoxide dielectric. Polarized, higher CV/volume ratio. Here is an example circuit using multiple capacitor symbols: This shows a real-world usage scenario of the various capacitor symbols in a schematic diagram.