We find that the cost competitiveness of solar power allows for pairing with storage capacity to supply 7.2 PWh of grid-compatible electricity, meeting 43.2% of China’s demand in 2060 at a price lower than 2.5 US cents/kWh.
The decline in costs for solar power and storage systems offers opportunity for solar-plus-storage systems to serve as a cost-competitive source for the future energy system in China. The transportation, building, and industry sectors account, respectively, for 15.3, 18.3, and 66.3% of final energy consumption in China (5).
Xi Lu, Shi Chen, Chris P. Nielsen, Chongyu Zhang, Jiacong Li, Xu He, Ye Wu, Shuxiao Wang, Feng Song, Chu Wei, Kebin He, Michael P. McElroy, and Jiming Hao. 2021. “ Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system.”
Province-level solar PV supply curves in China were constructed. PV technical potential was estimated around 39.6 PWh to 442 PWh. The uncertainty of PV technical potential was quantified. The cost of PV ranges from 0.12 CNY/kWh to 7.93 CNY/kWh. China's PV economic potential far exceeds its projected electricity demand.
We find that the cost competitiveness of solar power allows for pairing with storage capacity to supply 7.2 PWh of grid-compatible electricity, meeting 43.2% of China’s demand in 2060 at a price lower than 2.5 US cents/kWh. Content may be subject to copyright. limit in global, average surface-temperature rise. Understanding
In this case, the cost advantage of solar PV could be further amplified. The decline in costs for solar power and storage systems offers opportunity for solar-plus-storage systems to serve as a cost-competitive source for the future energy system in China.