In advanced polymer-based solid-state lithium-ion batteries, gel polymer electrolytes have been used, which is a combination of both solid and polymeric electrolytes. The use of these electrolytes enhanced the battery performance and generated potential up to 5 V.
As an important component in rechargeable lithium and beyond lithium based batteries, five types of electrolytes on current investigation including non-aqueous organic electrolytes, aqueous solutions, ionic liquids, polymer and hybrid electrolytes have been introduced in this review.
One of the key components of a lithium-ion battery is the electrolyte, which plays a crucial role in its function. What is the electrolyte in a lithium-ion battery? In a lithium-ion battery, the electrolyte is a liquid or gel-like substance that facilitates the movement of ions between the battery’s cathode and anode.
To address the above issues, both all-solid-state lithium-ion batteries (based on inorganic electrolytes) 173 and a lithium–air battery concept with a ‘dual-electrolyte’ (termed a hybrid lithium–air battery) were proposed.
The solid electrolyte not only sustains lithium-ion conduction but also acts as the battery separator (Fig. 3a). Cathode materials used in all-solid-state lithium-ion batteries are similar to those in the traditional lithium-ion batteries (for example, lithium transition metal oxides 136 – 139 and sulfides 140, 141).
In the late twentieth century, the development of nickel-metal hydride (NiMH) and lithium-ion batteries revolutionized the field with electrolytes that allowed higher energy densities. Modern advancements focus on solid-state electrolytes, which promise to enhance safety and performance by reducing risks like leakage and flammability.