The photovoltaic sector is now led by silicon solar cells because of their well-established technology and relatively high efficiency. Currently, industrially made silicon solar modules have an efficiency between 16% and 22% (Anon (2023b)).
Solar cells of this kind, characterized by reduced material usage, lower manufacturing costs, and flexibility, typically achieve conversion efficiencies ranging from 6% to 15% (Jaiswal et al., 2022).
The efficiency of organic solar cells has significantly grown during the past few decades, reaching 19.2% (Chao et al., 2023). In 2023, Hyperbolic metamaterial (HMM) was applied in organic cells and the HMM-incorporated OSCs (HMM-OSCs) improved power conversion efficiency significantly (Grätzel, 2003).
Literature indicates that at a cell temperature of 36°C, efficiency somewhat increases by up to 12%. However, efficiency starts to decrease above this temperature, as Fig. 13a illustrates. There are many efficient methods for controlling the operating temperature of solar cells which include both active and passive approaches.
The power conversion efficiency of a solar cell is a parameter that quantifies the proportion of incident power converted into electricity. The Shockley-Queisser (SQ) model sets an upper limit on the conversion efficiency for a single-gap cell.
Additionally, it evaluates efficiency improvement techniques such as light management and spectral utilization. While the efficiency of Si-based solar cells has plateaued around 25%, the efficiency of III–V compound semiconductor-based multi-junction solar cells is increasing.