Liquid-cooled battery energy storage systems provide better protection against thermal runaway than air-cooled systems. “If you have a thermal runaway of a cell, you’ve got this massive heat sink for the energy be sucked away into. The liquid is an extra layer of protection,” Bradshaw says.
The implications of technology choice are particularly stark when comparing traditional air-cooled energy storage systems and liquid-cooled alternatives, such as the PowerTitan series of products made by Sungrow Power Supply Company. Among the most immediately obvious differences between the two storage technologies is container size.
Energy 5 012002 DOI 10.1088/2516-1083/aca26a Article PDF Liquid air energy storage (LAES) uses air as both the storage medium and working fluid, and it falls into the broad category of thermo-mechanical energy storage technologies.
This trend has shifted to 5.016MWh in 20ft container with liquid cooling system with 12P416S configuration of 314Ah, 3.2V LFP prismatic cells. For example, a 70MWh battery requirement would be fulfilled by 14 Nos. of 5MWh BESS systems. For a 2-hour storage project, a 35MW capacity PCS and transformer-integrated solution would be used.
Kantharaj et al proposed a CAES system with liquid air storage, with an aim to overcome the needs for a pressurized large storage tank and the geological constraint of CAES. They found an efficiency of the hybrid system at about 42%, and concluded that the system was more economical than purely an LAES or a CAES system.
Thermal energy stores and storage media Numerous studies can be found in the literature on thermal energy storage materials, devices, and system integration, but not all are suitable for LAES. Compression heat store and storage media Water, thermal oil and solid particulate are among the main TES materials for storing compression heat.