Catastrophic failures often result in venting of the electrolyte, fire, or explosion. This is usually due to an overstress condition where the battery is abused or operated outside of its recommended voltage, current, or temperature limits , , .
The excessive current flow into the lithium-ion cell causes overheating and lithium plating, which leads to battery failure. When the current is in excess, the excessive joules will initiate more heat into the cell, causing overheating. The overheating leads to increased cell temperature hence failure.
Lithium-ion batteries can experience overvoltage and undervoltage effects. As noted in Figure 1, the operating voltage and temperature of the battery must be maintained at the point marked with the green box. If it is not, the cells can be damaged. Figure 1. Operating window of a lithium-ion cell. Image used courtesy of Simon Mugo
LiBs are sensitive to high power charging (fast charging), a too high or too low operating temperature, and mechanical abuse which eventually leads to capacity fade, short-circuiting, and the hazard of thermal runaway [3, 5, 6, 7, 8, 9]. Repeated fast charging can expedite battery aging, resulting in shorter battery life.
This capacity fade phenomenon is the result of various degradation mechanisms within the battery, such as chemical side reactions or loss of conductivity , . On the other hand, lithium-ion batteries also experience catastrophic failures that can occur suddenly.
Loose connections of any kind will result in total system malfunction or system-wide failure. Dampness in the casing where the battery is placed can result in short-circuiting. It can also lead to corrosion of the battery tabs, resulting in ponderous discharge and heat generation [126, 127, 128].