As one can notice, the reactors are very important part of capacitor bank, and they cannot be omitted in the designing process. They also cause the voltage rise of series connected capacitor. Increased voltage changes the power of the capacitor.
The required rating of the capacitor bank is 87.65 kVAR. So here we have added 90 kVAR capacitor bank. The reactive power supplied by capacitor bank is 88.7 kVAR. 5. Location of capacitor bank in LV system The capacitor bank must be connected close to load in parallel with each phase of the load. 6. Conclusion
Since the detuning factor for the project was given as p=7%, one knows that the capacitor bank needs to be equipped with reactors. For this reason, some calculations have to be performed, in order to fit the power of the capacitors and its rated voltage taking into account reactive power of a detuning reactors.
Increase in the number of capacitors in a bank will increase the energy storage capacity of the bank. The intent of this document is to explain the capacitor bank sizing calculation and power factor correction . 2. Purpose Capacitor banks are used in power factor improvement and correction to eliminate reactive components at the load side.
What is the required rating of capacitor bank. Where the capacitor bank needs to be located. Formula used for sizing the capacitor bank Figure-2 shows the reactive power compensated by adding switchable capacitor bank in parallel. The required rating of the capacitor bank is 87.65 kVAR. So here we have added 90 kVAR capacitor bank.
Formula used for sizing the capacitor bank Figure-2 shows the reactive power compensated by adding switchable capacitor bank in parallel. The required rating of the capacitor bank is 87.65 kVAR. So here we have added 90 kVAR capacitor bank. The reactive power supplied by capacitor bank is 88.7 kVAR.