Now, let's delve into how a BMS enhances the performance of lithium-ion batteries. The battery management system (BMS) maintains continuous surveillance of the battery's status, encompassing critical parameters such as voltage, current, temperature, and state of charge (SOC).
The technical challenges and difficulties of the lithium-ion battery management are primarily in three aspects. Firstly, the electro-thermal behavior of lithium-ion batteries is complex, and the behavior of the system is highly non-linear, which makes it difficult to model the system.
Therefore, the current lithium-ion battery thermal management technology that combines multiple cooling systems is the main development direction. Suitable cooling methods can be selected and combined based on the advantages and disadvantages of different cooling technologies to meet the thermal management needs of different users. 1. Introduction
The battery management system is key to the safe operation of the battery system and is often equipped to track operating conditions and monitor the battery system for potential faults . Without real-time, effective fault diagnosis and prognosis methods, a small failure can lead to even serious damage to the battery system .
A knowledge-based, multi-physics-constrained fast charging strategy for lithium-ion batteries is proposed , which considers the thermal safety and aging problems. A model-based state observer and a deep reinforcement learning-based optimizer are combined to obtain the optimal charging strategy for the battery.
In order to solve the problems of power lithium-ion batteries and improve system safety, advanced Battery Manegement System (BMS) technology has become an important research direction. As one of the important energy management strategies for BMS, SoC estimation plays an important role in health management and remaining life prediction.