Then, the application of phase change heat storage technology in different fields is discussed, including building energy saving, thermal management of electronic equipment, solar energy system and energy storage system.
Phase change materials (PCMs) having a large latent heat during solid-liquid phase transition are promising for thermal energy storage applications. However, the relatively low thermal conductivity of the majority of promising PCMs (<10 W/ (m ⋅ K)) limits the power density and overall storage efficiency.
Application of phase change energy storage in new energy: The phase change materials with appropriate phase change temperature should be selected according to the practical application. The heat storage capacity and heat transfer rate of phase change materials should be improved while the volume of phase change materials is controlled.
In the daytime, when the solar radiation is sufficient, in addition to heating the heat load, the excess heat can be stored in the phase change heat storage device, and the heat can be released at night to meet the demand of the load.
Or package the phase change materials in different shapes and sizes; Mixing of graphite or nanoparticles helps to enhance the low thermal conductivity of phase change materials. On the other hand, the heat storage performance is improved through optimizing the phase change heat storage device.
Fig. 7. Phase change energy storage- wind and solar hybrid integration. The phase change energy storage – wind and solar complementary system is a renewable energy combined power supply and heating system, which is composed of three parts: solar energy collection, photovoltaic and wind power.