For example, if a battery is replaced when it falls to 80% of original capacity and microgrid operation requires a certain battery capacity, the battery must initially be oversized by 25% to maintain the desired capacity at the end of the battery’s life.
As with capacity, there is no set definition regarding storage duration. According to US Energy Information Administration, storage duration depends on how grid scale batteries are used. It notes the following regarding capacity-weighted average storage duration in megawatt hours (MWh): Why is grid scale battery storage necessary?
A novel formulation for the battery energy storage (BES) sizing of a microgrid considering the BES service life and capacity degradation is proposed. The BES service life is decomposed to cycle life and float life. The optimal BES depth of discharge considering the cycle life and performance of the BES is determined.
Nowadays, microgrids (MGs) have received significant attention. In a cost-effective MG, battery energy storage (BES) plays an important role. One of the most important challenges in the MGs is the optimal sizing of the BES that can lead to the MG better performance, more flexible, effective, and efficient than traditional power systems.
The Inflation Reduction Act incentivizes large-scale battery storage projects. And California regulations now require energy storage for newly constructed commercial buildings. The same microgrid-based BESS can serve either or both of these use cases.
How long the battery energy storage systems (BESS) can deliver, however, often depends on how it’s being used. A new released by the U.S. Energy Information Administration indicates that approximately 60 percent of installed and operational BESS capacity is being exerted on grid services.