When capacitors are connected together in parallel the total or equivalent capacitance, CT in the circuit is equal to the sum of all the individual capacitors added together. This is because the top plate of capacitor, C1 is connected to the top plate of C2 which is connected to the top plate of C3 and so on.
Impedances (Z) are managed just like resistances (R) in parallel circuit analysis: parallel impedances diminish to form the total impedance, using the reciprocal formula. Just be sure to perform all calculations in complex (not scalar) form! ZTotal = 1/ (1/Z1 + 1/Z2 + . . . 1/Zn)
Parallel R-C circuit. Because the power source has the same frequency as the series example circuit, and the resistor and capacitor both have the same values of resistance and capacitance, respectively, they must also have the same values of impedance. So, we can begin our analysis table with the same “given” values:
We can also define the total capacitance of the parallel circuit from the total stored coulomb charge using the Q = CV equation for charge on a capacitors plates. The total charge QT stored on all the plates equals the sum of the individual stored charges on each capacitor therefore,
In this lesson, we will learn that capacitors in parallel add to the capacitance in the system in a similar way to placing resistors in series. You can use this knowledge to engineer a specific value of capacitance from those you already have on hand, or to increase the capacitance beyond that of your highest capacitor.
One important point to remember about parallel connected capacitor circuits, the total capacitance ( CT ) of any two or more capacitors connected together in parallel will always be GREATER than the value of the largest capacitor in the group as we are adding together values.