The components in Lead-Acid battery includes; stacked cells, immersed in a dilute solution of sulfuric acid (H 2 SO 4), as an electrolyte, as the positive electrode in each cells comprises of lead dioxide (PbO2), and the negative electrode is made up of a sponge lead.
In fact, the lead acid battery industry recycled >99% of the available lead scrap from spent lead acid batteries from 1999 to 2003, according to a report issued by the Battery Council International (BCI) in June 2005, ranking the lead recycling rate higher than that of any other recyclable material [ Gabby, 2006 ].
The lead battery recycling process ensures lead batteries are safely recycled in an established network of advanced recycling facilities.
... Lead batteries were recreated in accordance with other studies (Spanosa et al., 2015). The type of waste is classified as 'other' since the batteries are composed of different materials, such as polypropylene (Spanosa et al., 2015; Unterreiner et al., 2016), lead, lead oxide and sulfuric acid.
Recycling of lead-acid batteries flourishes because manufacturers seek the material as a source to make new battery products, which are profitable. The battery chemistry of a lead-acid cell simplifies its recycling process, whereas that of a LIB complicates recycling.
The growing of collected waste lead-acid battery quantity means the growing demand for secondary lead (Pb) material for car batteries, both needed for increased cars’ production and for replacing of waste batteries for the increased number of automobiles in service. Pb recycling is critical to keep pace with growing energy storage needs.