The system used is a paradigmatic real-world example of the so-called intelligent battery management systems. One of the contributions made in this work is the realization of a distributed design of a BMS, which adds the benefit of increased system security compared to a fully centralized BMS structure.
Hence, it is essential to create a dependable, and intelligent Battery Management System (BMS) as it is imperative to assure the security and dependability of battery systems in EVs [, , ].
In this work, as a contribution, a decentralized but synchronized real-world smart battery management system has been designed using a Cerbo GX general controller with networking communication capability and cloud data processing access, four charge regulators, and a sensorized smart battery monitor with networking and Bluetooth capabilities.
Battery management system (BMS) plays a significant role to improve battery lifespan. This review explores the intelligent algorithms for state estimation of BMS. The thermal management, fault diagnosis and battery equalization are investigated. Various key issues and challenges related to battery and algorithms are identified.
BMS Applications By managing the battery with an intelligent battery management system (BMS), information is received that will allow major degradation problems to be avoided. The amortization of a BMS is quickly realized by contributing to the prolongation of battery life.
Specifically, it allows the monitoring and management of the battery state of charge, energy consumption, and energy harvesting from solar panels, generators, and grids using characteristic electrical parameters such as the voltage, current, SOC, and battery temperature.