Nonetheless, life cycle assessment (LCA) is a powerful tool to inform the development of better-performing batteries with reduced environmental burden. This review explores common practices in lithium-ion battery LCAs and makes recommendations for how future studies can be more interpretable, representative, and impactful.
The LIB outperform the lead-acid batteries. Specifically, the NCA battery chemistry has the lowest climate change potential. The main reasons for this are that the LIB has a higher energy density and a longer lifetime, which means that fewer battery cells are required for the same energy demand as lead-acid batteries. Fig. 4.
The sensitivity analysis shows that the use-phase environmental impact decreases with an increase in renewable energy contribution in the use phase. The lithium-ion batteries have fewer environmental impacts than lead-acid batteries for the observed environmental impact categories.
A major challenge in the field of early life prediction of lithium-ion batteries is the lack of standardized test protocols. Different research teams and laboratories adopt various methods and conditions, complicating the comparison and comprehensive analysis of data.
Life cycle assessment of lithium-ion and lead-acid batteries is performed. Three lithium-ion battery chemistries (NCA, NMC, and LFP) are analysed. NCA battery performs better for climate change and resource utilisation. NMC battery is good in terms of acidification potential and particular matter.
This includes the potential integration of thermal management factors into predictive models and utilizing scaled-up experiments or simulation studies to validate findings from small battery tests. A major challenge in the field of early life prediction of lithium-ion batteries is the lack of standardized test protocols.