Basu et al. designed a cooling and heat dissipation system of liquid-cooled battery packs, which improves the cooling performance by adding conductive elements under safe conditions, and the model established by extracting part of the battery temperature information can predict the temperature of other batteries.
Liquid-cooled battery energy storage systems provide better protection against thermal runaway than air-cooled systems. “If you have a thermal runaway of a cell, you’ve got this massive heat sink for the energy be sucked away into. The liquid is an extra layer of protection,” Bradshaw says.
Since liquids have higher thermal conductivity and are better at dissipating heat, liquid cooling technology is better suited for cooling large battery packs .
Feng studied the battery module liquid cooling system as a honeycomb structure with inlet and outlet ports in the structure, and the cooling pipe and the battery pack are in indirect contact with the surroundings at 360°, which significantly improves the heat exchange effect.
In addition, the type of coolant due to the difference in thermal conductivity also affects the cooling effect of the cooling and heat dissipation system of the lithium battery pack.
For the cooling and heat dissipation of lithium battery pack, two cooling channel structures are feasible. In order to simplify the calculation, this paper selects 40 lithium batteries for design. The first kind of cooling and heat dissipation is a serpentine cooling channel.
An efficient heat transfer mechanism that can be implemented in the cooling and heat dissipation of EV battery cooling system for the lithium battery pack, such as a Tesla electric car, can be the following: Batteries are cooled by a liquid-to-air …