TOKYO, June 18, 2024—Canon Inc. announced today that it has developed a high-performance material which is expected to improve the durability and mass-production stability of perovskite solar cells. The company will further develop the technology and aims to initiate mass production in 2025.
Through joint research with Professor Dr. Tsutomu Miyasaka, inventor of the perovskite solar cell and faculty member at Toin University of Yokohama, a performance evaluation was conducted, the results of which verified its potential to improve the durability of perovskite solar cells and showed promise in advancing the stability of mass production.
Canon will begin shipping samples of this material in June 2024 in an aim to collaborate with companies engaged in the mass production of perovskite solar cells. Going forward, the company will work on further technological development and intends to start mass production in 2025.
The current status of perovskite solar cells, ongoing obstacles, and future prospects are discussed. Recent rapid growth in perovskite solar cells (PSCs) has sparked research attention due to their photovoltaic efficacy, which exceeds 25 % for small area PSCs.
The working principle of Perovskite Solar Cell is shown below in details. In a PV array, the solar cell is regarded as the key component . Semiconductor materials are used to design the solar cells, which use the PV effect to transform solar energy into electrical energy [46, 47].
Since 2009, a considerable focus has been on the usage of perovskite semiconductor material in contemporary solar systems to tackle these issues associated with the solar cell material, several attempts have been made to obtain more excellent power conversion efficiency (PCE) at the least manufacturing cost [, , , ].