Yes Crystalline silicon, including p-type czochralski (CZ) mono-crystalline and multi-crystalline (mc) silicon, has been the workhorse for solar cell production for decades. In recent years, there has been many developments in n-type c-Si solar cells basically due to the advantages of n-type c-Si wafers over p-type wafers.
In recent years, there has been many developments in n-type c-Si solar cells basically due to the advantages of n-type c-Si wafers over p-type wafers. However, there are some limitations in making n-type solar cells considering the technologies involved to fabricate p-type cells.
Crystalline Si, comprising p-type czochralski (CZ) mono-crystalline Si and multi-crystalline (mc) Si, has been the mainstay in solar cell production. The first crystalline Si solar cell was made on n-type substrates in the 1950s but the p-type technology has become more dominant in the current solar cell market.
Past barriers to adoption of n-type silicon cells by a broad base of cell and module suppliers include the higher cost to manufacture a p-type emitter junction and the higher cost of the n-type mono silicon crystal.
Future high efficiency silicon solar cells are expected to be based on n-type monocrystalline wafers. Cell and module photovoltaic conversion efficiency increases are required to contribute to lower cost per watt peak and to reduce balance of systems cost.
During 1970s when the only application of solar cells was for space vehicles, the solar cell industry changed to p-type substrates due to their higher resistance to space radiation. The use of p-type substrates for terrestrial cells continues to the present era, although there are other available options.