Connection of Cells in Photovoltaic Modules. As shown in Fig. 5, the solar cells in the modules with different surface structures of welding strips have no cracks, and there is no open welding, false welding and desoldering, which indicates that it can be used for the subsequent research.
The thickness of silicon wafer is 160 μm, the thickness of PV copper strip is 0.1 mm, the thickness of Sn alloy coating is 15 μm and 25 μm respectively. The physical properties of materials used in solar cell welding are shown in Table 6.
Thus, this paper presents a preliminary analysis of the parameters and their interactions of the welding process (by parallel-gap resistance welding) of interconnections between solar cells using design of experiments. In this welding process, the cell undergoes a certain level of degradation.
The quality of welding strip will directly affect the current collection efficiency of photovoltaic module, so it has a great impact on the power of photovoltaic module. The so-called photovoltaic welding strip is to coat binary or ternary low-melting alloy on the surface of copper strip with given specification.
The welding strip is an important part of photovoltaic module. The current of the cell is collected by welding on the main grid of the cell. Therefore, this paper mainly studies the influence of different surface structure of heterogeneous welding strip on PV assembly power improvement. The main findings are as follows:
In the photovoltaic module, the photovoltaic welding strip is packaged in EVA, and the reflected light from the surface of the photovoltaic welding strip passes through EVA and glass and enters the air. The transmission path of light is shown in Fig. 1.